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IMPROVEMENTS TO THE KERNEL FUNCTION METHOD OF

STEADY, SUBSONIC LIFTING SURFACE THEORY

Richard T. Medan

Ames Research Center

ABSTRACT

This report is concerned with three dimensional, thin wing theory as treated by a kernel

function lifting surface method. The method reported herein includes a new technique for

the determination of the influence functions. This technique is shown to require fewer

quadrature points, while still calculating the influence functions accurately enough to guaran-

tee convergence with an increasing number of spanwise quadrature points. The method also

treats control points on the wing's leading and trailing edges. The use of edge control points

is compared with usual Multhopp choice of control points and is shown to be advantageous

Sin some respects over the Multhopp choice. The report also deals with wing edge kinks and

cranks and methods alternative to the artificial rounding technique for handling them and

compares these methods to the artificial rounding technique. Finally, the report introduces

and employs an aspect of the kernel function method which apparently has never been used

before and which significantly enhances the efficiency of the kernel function approach.



IMPROVEMENTS TO THE KERNEL FUNCTION METHOD OF

STEADY, SUBSONIC LIFTING SURFACE THEORY

Richard T. Medan

Ames Research Center

1. INTRODUCTION

This report is concerned with three dimensional, thin wing theory as treated by a kernel

function lifting surface method. The method reported herein includes a new technique for

the determination of the influence functions. This technique is shown to require fewer quad-

rature points while still calculating the influence functions accurately enough to guarantee

convergence with an increasing number of spanwise quadrature points. The method also

treats control points on the wing's leading and trailing edges. The use of edge control points

is compared with usual Multhopp choice of control points and is shown to be advantageous

in some respects over the Multhopp choice. The report also deals with wing edge kinks and

cranks and methods alternative to the artificial rounding technique for handling them and

compares these methods to the artificial rounding technique. Finally, the report introduces

and employs an aspect of the kernel function method which apparently has never been used

before and which significantly enhances the efficiency of the kernel function approach.
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2. NOTATION

In this section the principal notation is described. Under certain summation symbols

in the text and after certain equations notation such as J = 1,JJ will be found. This

notation has been adopted from the FORTRAN computer language and means "for J = I

through JJ."

b wing span

bNK coefficient in the expansion for ACp (see eqs. 5.5 - 5.8)

c local chord length
+1 +1

c mean geometric chord, f c2 dn'/ f cdq'; cis used in normalizing the
-1 -1

pitching moment and the chordwise center of pressure

A C lifting pressure coefficient, C - Cp,
P P1  U

E(m) complete elliptic integral of the second kind with parameter m

hN chordwise pressure mode (see eq. 5.7)

HN influence function (see eq. 5.11)

JJ number of spanwise integration points (see eq. 7.2.1)

K(m) complete elliptic integral of the first kind with parameter m

K spanwise pressure mode number

KK the total number of spanwise pressure modes

M spanwise control point number

MM total number of spanwise control points

M- free stream Mach number

N chordwise pressure mode number

NN total number of chordwise pressure modes

P chordwise control point number
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PP total number of chordwise control points

S the area which is the projection of the wing planform onto the t,Q plane

W the wake shed from the trailing edge of S; this wake is assumed to lie in the

t,r plane and streamlines in the wake are assumed to be parallel to the

( axis

x a chordwise variable with origin and scale such that x = -1 denotes the

leading edge, while x = + 1 signifies the trailing edge

a the slope of the wing surface in the t direction

aNK the downwash created by the Nth chordwise pressure mode and the Kth

spanwise pressure mode

9 an angular chordwise variable such that p = 0 denotes the leading edge,

while p = 7r denotes the trailing edge (see eq. 5.8)

0 an angular spanwise variable such that 6 = 0 denotes the right tip looking

upstream, while 0 = 7r denotes the left tip.(see eq. 5.6)

perturbation velocity potential normalized by the free stream speed

7,," spatial coordinates made nondimensional by the wing semispan (the t," plane

is chosen parallel to the free stream velocity, while r is the spanwise variable;

the wing lies nominally in the t,i plane; a prime affixed to any of these

variables denotes that it is an integration variable)

Subscripts

le leading edge

te trailing edge
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3. THE INTEGRAL EQUATION OF LIFTING SURFACE THEORY

The mathematical problem associated with the physical problem being considered is

the following:

D.E.: (1 -M_2)0 t + n +  = 0 (3.1a)

B.C.: i(,n, 0) = ao(,r) for (,t) on S (3.lb)

lim [C (Q,7+e)-C (,i-e)] = 0 for (Q,7) on W (3.1c)
e+0

+ 0 as the distance from the wing (3.1d)
and wake becomes infinite

This boundary value problem can be transformed to an integral equation relating the

given downwash to the unknown pressure coefficient difference on the wing (Ashley (1965)).

The integral equation for ACp is the following:

+1 te a ')Jf7) lim 2  - III -')2 + 2) dt' dri'

- (,,O) -1 ie (3.2)

where

K -, vJ(;L17,)2 + -2]= 1 + (3.3)
/(- t)2 + 2 [(7-7-7') 2 + 12]

This equation is the mathematical expression of the fact that b is being represented as

a superposition of semi-infinite line doublets. The line doublets have strengths proportional

to ACp and have endpoints on the surface S and at downstream infinity.

The meaning of the limit (f,j7) -+ (,,0) deserves some explanation. If the point

(T,r,0) is in the interior of S or on the trailing edge, then iand - can simply be set equal

to t and 7r, respectively and the limit 5- 0 can be performed. If, however, (Q,7,0) is on

the leading edge, then i cannot be set to 4te prior to allowing ? to approach zero. That this

is true can be proven by considering the two dimensional case. In this situation the complex
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velocity, u-iw, behaves asi 1 [vre- o where r is the distance from the leading edge and

0 = tan- 1 (/(Q - t,)). Thus w behaves as r- /2 sin 0/2 and, therefore, unless 0 = 2nr,

w will approach infinity.
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4. FINITE PARTS OF THE DOWNWASH INTEGRAL

The integral in equation 3.2 has to be done numerically, so it is advantageous to be

able to interchange the limit processes discussed in the previous section with the integration.

It is possible to do this if one takes the so called "finite parts" (Mangler '(1951)) of the

resultant improper integrals. Integrals which require their finite part to be extracted will be

denoted by a cross on the integral sign. The rule to follow for a point not on the leading

edge is the following:

f (  d = lim d + f  ) dr -- f(O (4.1)
02 0f 727 e

-a -a e

(when f'(0) exists)

That the above rule is equivalent to performing the limit after the integration is easy to

show (Mangler (1951)). The rule to use for a point on the leading edge is the following

(Mangler (1951)):

a a

f() f(2) 2
)[ An d = lim e/Q f(2 ) (4.2)

The equivalence of this rule to performing the limit after the integration has been

discussed by Jordan (1967). The proof given by Wagner (1967) is invalid because the wrong

sign for an inverse tangent was taken. A simple way to piove the rule would be to simultane-

ously add the downwash and subtract the downwash integral for an infinite two-dimensional

wing swept to the same angle as the leading edge of the given wing. The contribution of

both integrands for the interval i - e to r + e can be made to cancel each other, while F

and can be set to 0 and (te for the remaining intervals. Furthermore it would be advan-

tageous to use as the two-dimensional wing the one with an infinite chord and with pressure

proportional to 1/ - te because the downwash on such a wing is zero. The term

-2/e/2f(0) in equation 4.2 would represent the contribution of one of the outer sections

of the two-dimensional wing.
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5. THE BASIC METHOD OF SOLUTION

The integral equation can be transformed to a more convenient form by the following

transformations of the chordwise variables:

b( (5.1) 

b le(7') + te()]
x - - (5.2)

c (') 2

Then, with the finite part notation of the previous section, equation 3.2 becomes:

+1 +1

= ACP((il') -(x-x' y) dx'dn' (5.3)

-1 -1

where

bp
y = ' (7 - n') (5.4)

The technique used to obtain a solution to equation 5.3 is the collocation method. In

this method the unknown pressure distribution is expressed as the sum of a finite number of

assumed functions with unknown, constant coefficients. The coefficients are determined.by

enforcing equation 5.3 at a finite set of (,rn) points and solving a set of linear, algebraic

equations obtained thereby.

The expansion for the pressure is as follows:

2b KK NN

AC n sin KO'hN(x')bNK (5.5)
K = 1 N = 1

where

O' = Cos- n'  (5.6)
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2 I--x' 2 0
- cot - for N = 1 (5.7a)

7 + x' 7 2

h N(x') =
2 sin [(N- 1)ip] for N > 1 (5.7b)

and where

c = os-' (-x') (5.8)

Substituting the pressure expansion into the integral equation (eq. 5.3) gives:

KK NN

oa(,) = I AK(') bNK (5.9)
K=1 N=1

where

+1

-1 sin K3'
ao(NK,t_) = HN(x,y) di? (5.10)

-1

and where

+1

HN(,y) = hN(X')K (x-x',y) dx' (5.11)

-1

The function HN in the above equation is called the influence function. The behavior

of this function for small y deserves careful consideration, but the discussion of its behavior

is deferred to section 7.4. If equation 5.10 is enforced at a set of collocation or control

points denoted by (Ep,q ), then the following set of simultaneous equations for the

unknown coefficients, bNK, is obtained:

OpPM =PMNK bNK (5.12)

where

OXPM = a(p,7M)
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and

&PMNK NK (p,' M

In the above equation, the index P ranges from 1 to PP while M ranges from 1 to MM.

Generally PP is made equal to NN and MM is equated to KK. In this paper the set of

numbers aPMNK is called the influence matrix or the set of downwash modes.
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6. WING EDGE KINKS AND CRANKS

The pressure coefficient expansion in eq. 5.5 behaves near the leading edge as the

reciprocal of the square root of the distance from the leading edge; near the trailing edge as

the square root of the distance to the trailing edge; and near the side edges as the square root

of the distance to the side edge. This behavior is correct at the leading and trailing edges if

there is no kink or crank in the edge as shown by Landahl (1968). If there is a kink or crank,

then the character of the pressure distribution changes considerably (Rossiter (1969)). The

pressure behaves as the distance to the kink or crank raised to some power which is a function

of the sweep angles to either side of the kink or crank and is not known in closed form.

Furthermore, even if the exponent could be determined easily, it would be very difficult to

correct the pressure expansion. This is because the pressure modes in eq. 5.5 produce down-

wash modes which are logarithmically singular at the spanwise location of the kink or crank,

except when = e (7) or ( = 7te (7). Thus each and every pressure mode must be modified

near the spanwise location of a kink or crank. This situation is to be contrasted with the case

where one is trying to correct the pressure expansion for the effects of a slightly deflected

control surface. In the latter instance the pressure modes in eq. 5.5 do not produce singular

downwash modes and, consequently, one can correct the pressure expansion merely by adding

a control surface pressure mode to the expansion (Medan (1973)). Such a procedure is not

valid for correcting the pressure expansion for kink effects. In view of the difficulties of

determining pressure modes appropriate for kinked and cranked wings, the usual procedure

taken is to introduce artificial rounding of the kinks (Garner (1968)). An alternate approach

is to avoid putting interior control points at or very near kink stations. This can be done either

by deleting the interior points which are at or near kink stations or by avoiding the kink stations

altogether. When the approach of deleting the interior points is adopted, then at least the same

number of pressure modes must be deleted. The procedure used herein is to decrease KK

(eq. 5.9). When this is done there are sometimes more equations left than unknowns and this

requires that the solution be obtained in the sense of least squares. Both methods of avoiding

the kink locations have been used and are compared with the artificial rounding technique in

section 9.3.
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7. CALCULATION OF THE DOWNWASH MODES

In order to effectively calculate the downwash modes of eq. 5.10 efficient numerical

methods must be developed to calculate the chordwise integral (influence function) of eq. 5.11

and the spanwise integral of eq. 5.10.

7.1 Method of Chordwise Integration

The first step in the calculation of the downwash modes is to calculate the influence

functions of eq. 5.11. When y = 0, the integrations are easily done analytically, but when

y * 0, the integrations are done numerically. In the latter case the influence functions could

be expressed in terms of elliptic integrals of the first, second, and third kinds, but since the

elliptic integrals themselves must be calculated numerically and since the elliptic integral for-

mulation involves numerical problems, a numerical calculation method specifically tailored

to the influence functions is preferred. In the subject method the following transformation

of variable is used:

x' --cos ' (7.1.1)

Equation 5.11 then becomes

HN (x,y) = 2 hN (x')K(x - x',y) sin p' dp' (7.1.2)

Because of the appearance of sin rp', the leading edge singularity of hi(x') is cancelled,

leaving a finite integrand at p' = 0. This in turn allows the trapezoidal rule to be used to

evaluate eq. 7.1.2. The simplicity of this rule is deceptive since it is actually extremely accurate

if the integrand is a polynomial in x'. It can be shown (Hildebrand (1956)) that if L integra-

tion points are used, then exact results will be obtained if the integrand is a polynomial with

degree as large as 2L - 1. The product of hN(x') with sin p' is a polynomial in x' of degree

N, so the degree of representation remaining for K is 2L - N - 1.

The degree of accuracy needed in the chordwise integration is determined by the weight

given to the influence function in the spanwise integration, as will be shown in section 7.3.

However, the question of how large L should be in order to give the specified degree of accuracy
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without being unnecessarily large cannot be answered by simple formulas. Instead the answer

is self-generated by the computer subroutine which performs the chordwise integration. This

is accomplished by computing the integrals with increasingly larger values of L, comparing

the changes in the computed integrals, and stopping when the increments become smaller than

a 5 computed by the calling program. This algorithm assumes the increment to be a reliable

measure of the accuracy. This is not always true when y and L are both small, so it was found

necessary to prescribe a minimum value of L based on y. At first glance it may seem that this

process of integrating over and over would be very inefficient in terms of computer time, but

the simplicity of the chordwise quadrature formula offers a saving grace. The redeeming quality

is that the integration points for L = 2J contain as a subset the integration points for L = J

and the weights for the two different values of L are in constant proportion. This means that

the result for L = 2J can be obtained by computing the integrand at only J points and by using

the previously computed integral (the one computed with J points total). This involves only

slightly more computing than if the result were obtained only for L = 2J and it gives the needed

information on the convergence. Thus this reintegrating procedure is not inefficient.

7.2 Method of Spanwise Integration

The integral in eq. 5.10 is computed by Multhopp's famous integration formula (Multhopp

(1950)), which is as follows:

1

2 -1 f( ')2 d ' - B()f(,') (7.2.1)

-1 J= 1,JJ

Jr
where 7' = cos = cos j + 1 (7.2.2)

If Tr is chosen to be one of the integration stations (the M-th station, for example), then the

formula for the Multhopp quadrature weights is

JJ + 1
M = J (7.2.3a)

4 sin tg

- sin &
B,(r) = B(JJ+ ) IM--JI odd (7.2.3b)

(JJ + 1)(nM - 7,)2

0 IM - JI even (7.2.3c)
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When IM - JI is small and JJ is large, the following approximation holds:

- (J + 1)
BM - (M- r2 si IM - JI odd (7.2.4)

(M - J) 7r' sin 0,

7.3 Choosing 5 for Chordwise Integrator

One can observe from equation 7.2.3 that the quadrature weights vary considerably in going

from the integration stations farthest from the control station to those nearest. The significance

of this fact as it pertains to the 6 given to the chordwise integrator (sec. 7.1) is that 6 should

vary with the spanwise integration station. One can also observe from equation 7.2.4 that the

quadrature weights nearest the control station increase in proportion to JJ + 1. The importance

of this behavior is (1) if the chordwise integration were done with a fixed accuracy, the com-

puted answer would ultimately diverge and (2) 8 should be decreased as JJ is increased. A

final fact needs to be introduced before the rule for selecting 6 is given. This is that the number

of points, L, required to obtain a given accuracy increases significantly as y becomes small

(i.e., as BMJ becomes'large with JJ fixed). This last observation is the reason for the appearance

of e in the following formula for 6 (if the accuracy did not vary with y, hence with BMY, e

would be replaced with 1):

= (7.3.1)
(JJ + 1)2(- BM )e

In the above, 6S is constant for a given planform, but should vary with the aspect ratio since

the value of JJ required to yield a given accuracy increases with the aspect ratio. For all results

reported herein 5 o = AR 2 and e = .5 unless otherwise stated. These choices for 6o and e are

the results of a modest attempt to minimize the total number of integration points and a better

choice might still be determined.

Some results have been obtained for the downwash created by two of the pressure modes

on two different wings. These results are shown in Table 7.3.1 which compares the total

number of integration points used by the current method with the number which would be

used by two other methods (Wagner (1967) and Zandbergen (1967)) provided that they use

the Multhopp spanwise integration method. It can be seen that the current method uses

substantially fewer points than the others while still converging to the correct answers.
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Another set of results is given in Table 7.3.2 as an illustration of the instability which

will occur if the chordwise integration is not coupled to the spanwise integration in the

manner of equation 7.3.1. The results for this table were obtained by not allowing more

than 24 chordwise integration points to be used.

7.4 Corrections for Spanwise Singularities

Although Multhopp's integration formula handles the 2nd order pole singularity, the

influence function contains singularities which Multhopp's formula either cannot handle or

else cannot handle effectively. For control points not on the wing edges the influence

functions contain terms behaving as (71 - 7')' In 177 - 77'1. The factor (i? - 77')2 is cancelled

by its reciprocal in equation 5.10 leaving a logarithm, which is not handled efficiently by

Multhopp's formula. The technique used to alleviate this deficiency is that used by Mangler

(1952) in which terms which will cancel the logarithm (leaving only (17 - 7')
3 In I'Q - 77'

terms) are simultaneously added and subtracted from the integrand. The added part is

integrated analytically while the remainder is treated by Multhopp's formula. The explicit

formula thus obtained for the downwash is:

+1

1hN bp d 1 sin KO'
UK (7,) c IK7)) 2 HN7-,4,

2 () dx' x'=x 27f (717I)

-1

S(c(b 2dh (n nl')2 ln 1 - 'l }dn' (7.4.1)

where

+1

IK (1) = - sin KO' In 17 - n'I dn'

- [2 2 - 1 - In 41 K = 1 (Mangler (1952)) (7.4.2a)

- [Ksin Ksin +cosKO cosO ] K>I (7.4.2b)
16 K2 - 1

(Zandbergen (1967))
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and where

-1

0 = cos 7 (7.4.2c)

The integral appearing in equation 7.4.1 is determined by Multhopp's formula. The

importance of this correction has been shown by Garner (1966).

For control points on the leading and trailing edges the behavior of the influence

functions changes considerably. This behavior has been discussed by Jordan (1967), who

also has given a method to derive the appropriate formulas (1969). For a control point on

the leading edge the leading terms in the expansions for the influence functions are propor-

tional to Ir - r7'1/2 and these are followed by ones proportional to 171 - 7q'13m . At the

trailing edge the leading terms are constants, which can be disregarded, followed by terms

proportional to Jr1 - 7'1Y2. By expanding the influence functions in the manner of Jordan

and by adding and subtracting the 1/2 and 3/2 order terms and by using equation 4.2 the

following formula for -the downwash for points on the leading edge has been derived:

OtNK(t'??) = gNI cos [(K - 1)0] [Jot- (7)r-(71 ) + JoI (7)r+(7)]

(K - 1) sin [(K - 1)0] [-jo o) () +j (n)F) (r1 )
sin 6

1 b
- - cos [(K- 1)6] [(tan Xle- - tan -)Jol-(
2 gJ 2c(,q)

+ (tan Xre+ - tan Xe+) Jo1+() +(r )]

+ g 1 cos [(K - 1)6] [Jl I- (n) rl-() + J 1+() ll+( )

+1

- -(7r1)2' {sin 0' cos [(K- 1)0']HN(Q,n,n')

- A(sin 0' cos [(K- 1)0'] HN(,9 '))}dn' (7.4.3)
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where

N = 1 (7.4.4a)

gNi
N > 1 (7.4.4b)

- N = 1 (7.4.5a)

g=

N 1(N -1) N > 1 (7.4.5b)

1/2

Jo"(c) = 4 cbt [E(mt+) + (m, + - 1)K(m+)] (7.4.6a,b)
L2 c c o s 0]

4 b2 b ]32 +) = -" C()~ l [(2m - 1)E(mi ) + (1 -m,)K(ml+)] (7.4.7a,b)

1 +

mI 2 (1 + sin 1e ) (7.4.8a, b)

OIe = tan-' tan Xle (7.4.9a,b)

r 3-(n) - [2E(m )-K(m-)] (7.4.10a,b)

, () = - [(2m+ - 1)E(m )+ (1 -m )K(m )] (7.4.1lab)
3r

_+ I ,-7?
m - (7.4.12a,b)

2

A-(sin ' cos [(K- 1)0']HN(Q,m ')) n'<1

A (sin 0' cos [(K- 1)O'] HN(,r,')= (7.4.13a)

aN (sin 0' cos [(K - 1)0'] HN(tr,n')) 7' >

(7.4.13b)
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A- (sin 0' cos [(K - 1) '] HN(,n,7')) = gN' J'1() cos [(K - 1)0] sin 0' I - n'l

+ g(K- 1) sin [(K - 1) 0] 1 bg'Jo cos [(K- )

sn0 -- gNIJo+ cos [(K - 1)02]
sin 0 2 2c(i)

X (tan Xle - tan Xte ) +g 1 JI' +(r ) cos [(K - 1)01 sin 0' -n '

(7.4.14a,b)

In the above formulas Xle± and Xte± are the leading and trailing edge sweep angles. The

angles are defined such that they are positive on the side of the control point which is swept

forward and such that A - and = --te- for an unkinked wing. Also it should be

noted that in the above equations the spanwise pressure modes have been changed from sin KO'

to sin 0' cos [(K - 1)0']. The reason is that the latter modes are better conditioned

numerically. After the downwash modes are calculated they are linearly transformed to

make them correspond to the pressure modes of equation 5.5. The functions J0ot (r)

and J11± (r) are spanwise integrals, which may be determined by equations 7.4.3 and

7.4.13. Jo' (r) was determined by use of equation 4.2 (S. W. Wagner, unpublished notes).

The above formulas account for the spanwise variation of the spanwise pressure modes

(2nd term of eq. 7.4.3) and wing chord (3rd term of eq. 7.4.3) but not for curvature of the

wing leading edge.

The formulas for points on the trailing edge are as follows:

o ,) = --gNt cos [(K- 1)0] [Jlt-(n) 1-(77) + Jlt+(~) 1r+ ()]

+1
2 (7 -rl)2 sin 0' cos [(K-- 1)6']H , ,,')

-1

-A (sin 0' cos [(K- 1)O']HN, (r,,q,'))} dr' (7.4.15)

N = 1 (7.4.16a)

(-1)N (N- 1) N > 1 (7.4.16b)
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b4 32 [(2m t  - 1)E(mt ) + (1 - m) K(mt)]Jm±() =3 2 c() cos te

(7.4.17a, b)

+ =1

mt  [1 - sin e ] (7.4.18a, b)

=te tan-' 1 tan X (7.4.19a,b)

-(sin O' cos [(K- 1) '] H (,,,')) Q' < n

A(sin O' cos [(K - 1) O']Hn( ,, ')) = (7.4.20a)

A (sin 0' cos [(K - 1) 6'] H (,,n')) ' > n
(7.4.20b)

A± (sin 6' cos [(K - 1)0']H (,7,f')) = -gtJ't± cos [(K - 1)6' sin t'] 17 -- 3'2

(7.4.2 1a, b)

The importance of these corrections for a control surface pressure mode which is

similar near the wing edges to the pressure modes discussed herein for N> 1 was established

by Medan (1973). When N = 1, the numerical integration would not even converge without

these corrections because of the -3/2 order singularity, which cannot be handled with

Multhopp's integration formula.

18



NUMBER OF POINTS USED
ERROR IN ERROR IN OR WHICH WOULD BE USED

K AR N JJ o( CHORDWISE SPANWISE
NK INTEGRATION INTEGRATION CURRENT NLR WAGNER

METHOD (ref.11) (ref.4)

15 1.33572 <5X10 -0.00101 84 252 232
31 1.33661 <5X10 "6  -0.00012 192 868 536

1 63 1.33672 <5X10 6  -0.00001 480 1888 1336
127 1.33673 <5X10_ <5X10-' 1368 3312 2336
255 1.33673 <5X10-6 <5X10-6 3264 >5746 4206
001 1.33673 -- -- -- -- --

2
15 -0.55496 -0.00017 -0.07454
31 -0.49314 0.00001 -0.01272

7 63 -0.48212 <5X10' -0.00170 same as for N-1
127 -0.48063 <5X10 "G -0.00021
255 -0.48044 <5XI10 -  -0.00002
C0  -0.48042

15 2.48865 <5X10 6  -0.02105 42- i48 232
31 2.50220 <5X10'~ -0.00750 108 348 464

1 63 2.50841 <5X10-v -0.00129 252 774 928
127 2.50956 <5X10 "( -0.00014 588 1626 1928
2551 2.50968 <5X10 b  -0.00002 1332 3508 3784.

-00 2.50970 <5X10b -- -- -- -

15 -3.12098 -0.00146 -1.684
31 -1.94368 -0.00001 -0.507

7 63 -1.54671 <5X10 "6  -0.110 same as for N=I
127 -1.45384 <5X10-6 -0.017
255 -1.43927 <5X10 "6  -0.002
gZ -1.437 - --

1. Kellaway, W.: Evaluation of the Downwash Integral for Rectangular Planforms0
by the RAC Subsonic Lifting Surface Method. Aeronautical Quarterly, vol. 23,
pp. 181i-187, August 1972.

2. extrapolated

TABLE 7.3.1. - DOWNWASH ON RECTANGULAR WINGS AT E = 0.8c/(b/2) AND q = 0.0 DUE TO

PRESSURE MODES OF EQ. 5.5. The starting number of chordwise integration points was 2.



JdJ X 1  ERROR

15 1.33572 -0.00101

31 1.33662 -0.00011

63 1.33784 0.00110

127 1.36127 0.02454

255 1.51481 0.17808

TABLE 7.3.2. DOWNWASH ON AN ASPECT RATIO 2 RECTANGULAR WING AT
t = 0.8c/(b/2) AND 7? = 0 DUE TO THE N = K = 1 PRESSURE MODE AND
WITH NUMBER OF CHORDWISE INTEGRATION POINTS LIMITED TO 24.
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8. CHOICE OF CONTROL POINTS

The set of control points (also called collocation points) is discussed in this section. ' ;

8.1 Selection of Chordwise Control Points

Multhopp (1950) gave a general rule for determining where the chordwise control points

should be placed. Hsu (1959) has shown that this choice is optimal in the sense that the choice

will lead to the exact answer for the i-th moment of the pressure in the two-dimensional airfoil

case when the camber line is a polynomial of degree 2PP - 1 - i or less. PP is the number of

chordwise control points and the number of pressure modes. This rule is the following:

2irP
S= -cos 2PP+ P = 1,PP (8.1.1)

Thus, for example, the exact lift (i = 0) and pitching moment (i = 1) would be obtained in the

two dimensional case if 5 points were placed according to the above rule and the camberline

were a polynomial of degree 8 or less. Jordan (1969), however, has pointed out that a rule

such as the above is not necessarily the best in the three dimensional case and that advantage

can be realized by using control points on the wing edges. One reason given by Jordan is that

the edge control points become ideal as the aspect ratio approaches zero. Another reason is

that with edge control points the remaining logarithmic term (the (1r - r') 3 In Iq- r'l of

section 7.4), which is a major source of error, can be eliminated in favor of a less troublesome

one (proportional to I1 - 'Isn ). Wagner has shown (unpublished work) that the following

choice, which includes control points on the leading and trailing edges, is optimal in the pre-

viously discussed sense:

(P - 1)n
S= -cos -- P = 1,PP (8.1.2)

PP - 1

The degree of precision for Wagner's rule, is 2 less than for Multhopp's rule because 2 control

point locations are preassigned.

These two choices for the chordwise control points are compared in section 9.
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8.2 Spanwise Control Points

Although Multhopp's integration formula (eq. 7.2.1) does not impose any conditions on

the spanwise control point locations, it is advantageous to choose the spanwise control point

locations to be a subset of the integration points. The reason is that with this restriction

almost half of the quadrature coefficients are zero (see eq. 7.2.3c). Thus the influence func-

tions need to be determined for fewer times. The following rule will insure that the spanwise

control points are a subset of the spanwise integration points provided that (JJ + 1) = q(MM + 1)

where q is an integer:

= os M = 1,MM (8.2.1)
lM = MM + 1

This choice of control points has been used for most kernel function methods and is employed

in the current method with only minor variations although the computer programs associated

with the method allow any of the spanwise integration points to be used as spanwise control

points.
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9. RESULTS

In this section results for several wing planforms are presented and discussed and coin-

pared with other theoretical results. These results were calculated using the computer programs

documented in Medan (1973b-e, 1974, 1974b).

9.1 The Aspect Ratio 2 Rectangular Wing

The influences of the number of spanwise integration points, JJ, the number of chordwise

control points, NN, and the type of control point distribution on the predicted lift curve slope

are shown in figures 9.1.1 and 9.1.2. For these results MM = KK = 7 and PP = NN. Figure

9.1.1(a) shows the results for the Wagner control point distribution (eq. 8.1.2) for various

values of PP from 3 to 7. Figure 9.1.1(b) shows similar results for the Multhopp control point

distribution (eq. 8.1.1). A comparison of these figures reveals that as JJ approaches infinity,

the Multhopp distribution gives more accurate answers for a given value of PP. However, the

Wagner distribution results converge much faster with respect to JJ so that for finite values of

JJ, the Wagner distribution generally gives better results. The reason for this is that, aside from

control points exactly on the wing edges, the Wagner points are a much greater distance from

the edges than the Multhopp points and the remaining irregularities not removed from the"

spanwise integrals (section 7.4) become large as the edges are approached. Thus the Wagner

distribution is sometimes superior to the Multhopp distribution in terms of accuracy. It will

be shown the next section that it is also superior in terms of efficiency.

Some of the points in figure 9.1.1 have been replotted in figure 9.1.2 to show more

clearly the differences between results obtained with the Wagner distribution and results obtained

using the Multhopp distribution. This plot also shows the high degree of accuracy that can be

obtained with the kernel function method. All of the points on this graph fall within .062% of

the exact answer, which is estimated to be 2.47440 ± .00002. Furthermore all of the points

for J > 127 fall within .015% of the exact answer and the points for N = 5 and JJ = 255 are

within .004% of the exact answer. Note that these results were obtained with only 16 to 20

unknowns.

Figure 9.1.3 compares the present kernel function method to the Multhopp method

reported by Lamar (1968). The present method employed the Multhopp points for a meaning-

ful comparison. This graph shows that 4 chordwise modes and 2 symmetric spanwise modes are
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sufficient to give a very accurate answer. The results of Lamar (1968) were obtained by using

the same set of control points and pressure modes mutually dependent with the ones used

herein. Therefore the large discrepancy between the two sets of results is due to the integration

procedures employed to determine the elementary downwash modes (influence coefficient

matrix). In particular the divergence of the Multhopp method as MM goes to infinity is due to

the fact that a fixed number of chordwise integration points is employed' by Lamar, i.e., the

chordwise integration is not coupled to the spanwise integration as discussed in section 7. The

poorness of the results obtained for MM = 3 and MM = 7 is probably due mainly to the fact

that not enough spanwise integration points were employed. In the Multhopp method the span-

wise integration points are identical with the spanwise control points, i.e., JJ = MM, so only 3

or 7 spanwise integration points were employed. In the precomputer era in which Multhopp

formulated his method such a limitation was very advantageous and very nearly essential, but

with the current high speed computers and the attendant quest for increased accuracy such a

limitation is a distinct disadvantage, as figure 9.1.3 shows.

9.2 The Circular Wing

The circular wing has been treated at length by Jordan (1971), who has given sufficiently

accurate numerical values to compare against. Results using the current method with 36

different combinations ofPP, MM, and JJ and using the Wagner chordwise control point dis-

tribution have been calculated and are tabulated in tables 9.2.1 - 9.2.5. The lift curve slope is

given in table 9.2.1 from which it can be seen that CL is predicted with an error of less than

.001% for PP = 7, MM = 15, and JJ = 255. Furthermore the largest error for any of the cases

is only .72%. One can also see from this table and also following tables that PP and MM need

not be related to one another as is suggested by Lamar (1968). The reason that these quantities

(N and M in Lamar (1968)) need to be related for Lamar's method is partly due to the fact

that the spanwise integration stations and spanwise control points are identical. This requires

MM (M) to be increased as PP (N) is increased because more integration points are needed as

PP increases. Thus the point is reached where either an unacceptably large number of unknowns

is involved or else the computer storage capacity is exceeded. The current method is not

hampered by this problem as the tables show.

The vortex drag factor is presented in table 9.2.2. The exact result for this quantity was

not given by Jordan.
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Table 9.2.3 gives the results for the pitching moment. Again the result for the case

PP = 7, MM = 15, and JJ = 255 is extremely accurate being in error by only - .0030%. In

the worst case the error is only .77%.

The calculated chordwise center of pressure is shown in table 9.2.4. As for the previous

results the error for the case PP = 7, MM = 15, and JJ = 255 is very small (- .0040%) while in

the worstcase the error is still only 0.67%.

The sectional lift coefficient at the wing tip is shown in table 9.2.5. The calculated results

;in this instance are not nearly as good as the results obtained for the overall parameters. An

examination of the table shows that more spanwise control points should have been used. The

fundamental problem, however, consists in the fact that there are singularities in the pressure

distribution which are not present in the pressure modes of eqs. 5.5 - 5.7. In particular Jordan

(1971) has shown that the sectional lift is given by

c)= [ +-L , In 4 c(1) + O( V ,2)
16 1

while the pressure modes of eqs. 5.5 - 5.7 admit only a representation of the form

ct() = Ao + A + + AKK- 1 lKK- 1

This inadequacy in the present theory, however, is not very significant because the sectional

loading itself, which is proportional to the product of the section lift coefficient with the chord,

goes to zero at the tip.

Table 9.2.6 compares the present method with other methods (Labrujere (1968), Giesing

(1968), and Mercer (1973)). The method of Garner is quite similar to the current method and,

for the same parameters, yields essentially the same results. The present method differs from

Garner's principally in the manner in which the chordwise integration is performed (see section

7.1) and because the current method can employ control points on the wing edges. Minor

differences occur also in the corrections for the spanwise singularities. The method of Labrujere

is also a kernel function method similar to the present method, but less so than Garner's method.

The present method differs from the latter in the manner in which the chordwise integration is

performed (see section 7.1 and table 7.3.1), in the method of spanwise integration (although

the same set of integration points are used), and again because the current method is able to

handle control points on the wing edges. For a further comparison of the Garner and Labrujere

methods the reader is referred to Garner (1968).
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The vortex lattice method is seen to give relatively poor results in comparison with the

kernel function methods even though a large number of vortices were used. In fact the vortex

lattice method does not seem to be converging to the correct answer as the number of panels

is increased.

The vortex spline method is also seen not to be as accurate as the kernel function methods,

although it is substantially better than the vortex lattice method for this particular wing.

9.3 The Warren 12 Wing

The so called Warren 12 wing is a swept, tapered wing shown in figure 9.3.1. The pressure

modes in eqs. 5.5 - 5.7 are not entirely suitable near the kink at the center because the down-

wash modes that they create generally become infinite as the center section is approached

except along the trailing edge. A procedure which has been adopted to overcome this difficulty

is to introduce an artificial rounding of the planform near the center (Garner (1968)). Although

the computer programs for the present method allow such a rounding to be done, it seemed to

the author that other approaches would be easier and less subject to criticism. Specifically

three different approaches were considered:

1. To use even values for MM, which automatically eliminates all control points on the

centerline.

2. To use odd values for MM, but delete all the control points on the centerline.

3. To use odd values for MM, but delete all control points on the centerline except for the

one at the trailing edge.

Procedure 1 is easily implemented, but, as will be discussed in section 10, it is the least

efficient of any of the other two procedures. The second procedure is implemented by deleting

all of the rows in the influence matrix that correspond to points on the centerline and by

reducing KK, the number of spanwise modes by 2 (by deleting certain columns in the influence

matrix). This results in an influence matrix which is still square. Procedure 3 is implemented

in a similar way except that the trailing edge point is not eliminated. This results in a nonsquare

influence matrix whose solutions are determined in the least squares sense. The equation

solving program (Medan (1974)) was designed to easily accomodate procedures 2 and 3.

Figures 9.3.2 - 9.3.4 show certain results obtained using the above three procedures with

4 chordwise control points chosen according to the Wagner rule (eq. 8.1.2). Also shown are
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results from Lagrujere (1968). All of these results are tabulated in table 9.3.1 along with a set

of results using procedure 1 with the Multhopp chordwise control points (eq. 8.1.1). It can be

seen that there is relatively little difference between the two columns in the table representing

procedure 1. Thus results obtained with the current method as MM goes to infinity should be

nearly the same as the results obtained by Labrujere as the amount of rounding goes to zero

and MM goes to infinity. One can see from figures 9.3.2 - 9.3.4, however, that such is not the

case. It is not known for certain which set of results is in error, but it seems that the current

results are more likely to be correct since the answers extrapolated to MM equal to infinity do

not vary appreciably with the chordwise or spanwise control point distribution and since a

sufficient number.of spanwise integration points was used (table 9.3.2). This discrepancy is

probably not due to the rounding of the planform, but most likely is due to some numerical

error or computer roundoff error, but, nevertheless, it should be resolved sometime.

An important result to observe is that the presence! of the kink significantly and adversely

affects the rate of convergence. In other words a much larger value of MM is required to obtain

a given accuracy when a kink is introduced (compare figs. 9.1.3 and 9.3.2). Another result to

note is that the rate of convergence of procedure 1 is significantly greater than for procedure

2 or 3. Furthermore procedure 3 is not better than procedure 2 as had been presupposed.

A conclusion drawn from this study of the Warren 12 wing is that even though artificial round-

ing can be avoided, the problem of the kinked wing deserves more study.
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REPRODUCTBILITY OF THE
ORIGINAL PAGE IS POOR

JJ
PP MM

31 63 127 255

3 1.80165 1.80226 1.80271 1.80294
.65% .68% .711 .72,

3 7 1.79824 1.79902 1.79950 1.79978
.46% .50% .531 .55%

15 1.79774 1.79857 1.79907 1.79934
.43% .48% .51 .52%

3 1.79619 1.79583 1.79563 1.79542
.34% .32% .31% .30%

4 7 1.79030 1.78996 1.78973 1.78955
.015% -.0035% -.016% -.026%

15 1.78994 1.78874 1.78860 1.78840
-.0046% -.072% -.079% -.0912

3 1.79635 1.79631 1.79628 1.79618
.35% .35% .35% .34

5 7 1.79053 1.79127 1.79113 1.79104
.028% .070% .060% .057%

15 1.79044 1.79016 1.79030 1.79015
.023% .0077% .015% .0071%

3 1.79631 1.79634 " 1.79632 1.79623
.35% .35% .35% .35%

'7 7 1.79184 1.79088 i 1.79110 1.79100
.10% .048% .060% .055%

15 1.79130 1.79017 1.79011 1.79004
.071% .0082% .0049% .00095%

TABLE 9.2. 1. - THE LIFT COEFFICIENT CALCULATED FOR THE CIRCULAR
WING. The numbers expressed as percentages are the errors determined from
the exact result of 1.7900230 obtained by Jordan (1971).
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REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

J,!
PP MM

31 63 127 255

3 1.00010 1.00010 1.00010 1.00010

3 7 1.00026 1.00025 1.00024 1.00024

15 1.00030 1.00029 1.00028 1.00027

3 1.00013 1.00013 1.00013 1.00013

4 7 1.00040 1.00040 1.00039 1.00040

15 1.00043 1.00050 1.00049 1.00048

3 1.00012 1.00012 1.00012 1.00012

5 7 1.00037 1.00035 1.00036 1.00036

15 1.00040 1.00043 1.00042 1,00042

3 1.00012 1.00012 1.00012 1.00012

7 7 1.00035 1.00036 1.00036 1.0003F

15 1.00039 1.00044 1.00044 1.00044

TABLE 9.2.2. - THE VORTEX DRAG FACTOR CALCULATED FOR THE CIRCULAR
WING.
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PP MM
31 63 127 255

3 .55349 .55164 .55039 .54947

.78% .44% .22% .049%

3 7 .55344 .55161 .55035 .54946

.77% .44% .21% .047%

15 .55345 .55161 .55034 .54944
.77% .44% .21% .045%

3 .54951 .54950 .54947 .54941
.056% .055% .050% .039%

4 7 .54986 .54957 .54952 .54947
.12% .068% .058% .049%

15 .54940 .54959 .54948 .54942
.036% .071% .052% .041%

3 .54926 .54926 .54924 .54918
.012% .011% .0077% -.0034%

5 7 .54850 .54940 .54928 .54924
.13% .038% .015% .0073%

15 .54894 .54924 .54928 .54921
-.047% .0082% .015% .0028%

3 .54903 .54904 .54917 .54913
-.031% -.029% -.0056% -.0121

7 7 .55096 .54842 .54930 .54919
.32% -. 14% .0180 -. 0016%

15 .55061 .54891 .54907 .54918

.26% -.053% -.023% -.0030%

TABLE 9.2.3. - THE PITCHING MOMENT ABOUT THE CENTROID CALCULATED
FOR THE CIRCULAR WING. The reference chord is 16/(3 r)(b/2). The numbers
expressed as percentages are the errors determined from the exact result of
0.5491977 obtained by Jordan (1971).
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REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

PP MM
31 63 127 255

3 -.30721 -.30608 -.30531 -.30476
-.13% .24% .4q9 .67%

3 7 -.30777 -.30662 -.30583 -.30529
-.31% .063% .32% .50%

15 -.30786 -.30669 -.30590 -.30536
-.34% .038% .30% .47%

3 -.30593 -.30599 -.30601 -.30601
.29% .27% .26% .26%

4 7 -.30713 -.30703 -.30704 -.30704
-.11% -.072% -.074% -.075%

15 -.30694 -.30725 -.30722 -.30722
-.041% -.14% -.13% -.13%

3 -.30576 -.30577 -. 30577 -.30575
.34% .34% .34% .35%

5 7 -.30633 -.30671 -.30667 -.30666
.16% .032% .047% .050%

15 -.30660 -.30681 -.30681 -.30680
.07% -. 00051% .00080% .0044%

3 -.30564 -.30564 -.30572 -.30571
.38% .38% .36% .36%

7 7 -.30748 -.30623 -.30668 -.30664
-.22% .19% .042% .056%

15 -.30738 -.30662 -.30672 -.30680
-.19% .061% .028% .0041%

TABLE 9.2.4. - THE CHORDWISE CENTER OF PRESSURE CALCULATED FOR
THE CIRCULAR WING. The center of pressure is measured from the centroid
and is in terms of the reference chord-= 16/(37r)(b/2). The numbers expressed
as percentages are the errors determined from the exact result of -0.3068104
obtained by Jordan (1971).
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JJ
PP fMM

31 63 127 255
- -

3 1.77 1.77 1.77 1.77
11.1% 11.2% 11.2% 11.2%

3 7 1.73 1.73 1.73 1.73
8.3% 8.5% 8.6% 8.7%

15 1.69 1.70 1.70 1.70
6.3% 6.7% 6.9% 7.0%

3 1.76 1.76 1.76 1.76
10.5% 10.5% 10.5% 10.5%

4 7 1.70 1.70 1.70 1.70
6.8% 6.8% 6.8% 6.8%

15 1.68 1.65 1.66 1.66
5.3% 3.8% 3.9% 4.0%

3 1.76 1.76 1.76 1.76
10.6% 10.6% 106 10.6% 10.5%

5 7 1.70 1.71 1.71 1.71
7.0% 7.2% 7.1% 7.1%

15 1.68 1.66 1.67 1.67
5.7% 4.5% 4.8% 4.8%

3 1.76 1.76 1.76 1.76
10.6% 10.6% 10.6% 10.6%

7 7 1.71 1.71 1.71 1.71
7.2% 7.1% 7.1% 7.1%

15 1.68 1.66 1.67 1.66
5.5% 4.5% 4.6% 4.4%

TABLE 9.2.5. - THE TIP LIFT COEFFICIENT CALCULATED FOR
THE CIRCULAR WING. The numbers expressed as percentages
are the errors determined from the exact result of 1.5931 obtained
by Jordan (1971).
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REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

PERSON METHOD ERROR IN CL IERROR IN
PITCHING
MOMENT ABOUT
CENTROID

MEDAN Kernel function .00090% -. 00309
method
PP=7, MM=15,
dJJ=255
Chordwise points
from eq. 46

GARNEP Kernel function .0150, +.055?
(ref. 8) method

PP=4., M=11,
J= 5
Chordwise points
from eq. 45

LARRIhIE RE Kernel function .015% +.019%
(ref. 8) method

PP=4, MM=11
Chordwise points
from eq. 45

GIESING Vortex lattice 2.3; +.38
(ref. 24) method with 210

boxes

GIESING Vortex lattice 2.80,- +.82.
(ref. 24) with 504 boxes

(252 unknowns)

MERCER Vortex spline -. 453 -1.6
(ref. '25,
fig. 11)

TABLE 9.2.6. - A COMPARISON OF VARIOUS METHODS WHICH HAVE BEEN USED ON
THE CIRCULAR WING.
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PROCEDURE

NLR NIR
small I large

1 1 2 3 roundln rounrinl
QUANTITY MM (reF. 9) (reF. P)

CHORDWISE CONTROL POINTS

EQ. 46 EQ. 45 EQ. 46 EQ. 46 EQ. 45 EQ. 45

6 or 7 2.8066 2.8063 2.8317 2.7876 -- -

Lift 10 or 11 2.7895 -- 2.8237 2.7904 -- --
coefficient 14 or 15 2.7794 2.7795 2.8123 2.7909 2.7373 2.7634

22 or 23 2.7694 -- 2.7922 2.7804 -- --
30 or 31 2.7641 2.7648 2.7824 2.7742 2.7576 2.7632

6 or 7 1.0228 1.0227 1.0105 1.0076 -- --

Aerodynamic 10 or 11 1.0290 -- 1.0229 1.0211 -- --

center 14 or 15 1.0324 1.0322 1.0277 1.0266 1.0479 1.0445
(c=.72224h/2) 22 or 23 1.0359 -- 1.0326 1.0321 -- --

30 or 31 1.0376 1.0377 1.0352 1.0349 1.0429 1.0444

Local 6 or 7 .0244 .0244 .0000 .0124 -- --

aerodynamic 10 or 11 .0437 -- .0335 .0205 -- -

center 14 or 15 .0559 .0550 .0481 .0382 .1502 .1509
at the 22 or 23 .0711 -- .0631 .0562 -- --

centerline 30 or 31 .0807 .0809 .0733 .0679 .1356 .1498

TABLE 9.3.1. - A SUMMARY OF THE RESULTS OBTAINED FOR THE WARREN 12 PLANFORM.



REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

PRESENT NLR

6 223 -
10 351 -
14 239 -
22 367 -
30 247 -

7 255 -
11 383 -
15 255 127
23 383 -
31 255 255

TABLE 9.3.2. - THE NUMBER OF SPANWISE INTEGRATION POINTS EMPLOYED IN
OBTAINING THE RESULTS OF TABLE 9.3.1.

35



2.478 -

PP=

72.476

2.476 -

.4

2.474 -

CLa

2.47 2

2.470

I I I

1282 642 322 (JJ + 1)2

(a) THE WAGNER DISTRIBUTION

Figure 9. 1.1. - The effects of the number of chordwise control points (PP), the control point
distribution, and the number of spanwise integration points (JJ) on the predicted lift
curve slope of the aspect ratio 2. rectangular wing. MM = 7. So = 1. for some cases.
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2.478 -

PP=
2.476 - -4

05

2.474
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CLa

2.472

2.470

I I I

1282 642 322 (JJ +1) 2

(b)THE MULTHOPP DISTRIBUTION

Figure 9.1.1. - Concluded.
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Control points N. Control points

0 4 Wagner

2.4770 0 4 Multhopp

a. 0 5 Wagner
N=4 Wagner A 5 Multhopp

2.4760 - V "
N=4 Multhopp

CLa

2.4750

2.4740 1 1
0 1/256 1/128 1/64 1/32

JJ+I

Figure 9.1.2. - The effects of the number of chordwise control points (PP), the control point
distribution, and the number of spanwise integration points (JJ) on the predicted lift
curve slope of the aspect ratio 2. rectangular wing.
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2.55- 0 Present method JJ=127, N=4
2.55 - O Lamar JJ= MM, N= 4

2.50

2.45 -

CLa

2.40 -

2.35I I I
0 1/32 1/16 1/8 1/4

I
MM+I

Figure 9.1.3. - The effect of revised integration procedures on predicting the lift curve
slope of the aspect ratio 2. rectangular wing.
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53.543_

(1.0607, 0.)

(1.3536, I.)

(1.7071, I.)

" Aspect ratio = 2.2 "

Taper ratio = 1/3

Figure 9.3.1. - The planform of the Warren 12 wing
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Figure 9.3.2. - The convergence of the lift coefficient of the Warren 12 planform with
respect to the number of spanwise control points. a = 1 radian.
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Figure 9.3.3. - The convergence of the aerodynamic center of the Warren 12 planform with
respect to the number of spanwise control points. a = 1 radian. c = 0.72224b/2.
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Figure 9.3.4. - The convergence of the local aerodynamic center at = 0 of the Warren 12
planform with respect to the number of spanwise control points. 1 = 1. radian.
The local aerodynamic center is measured relative to. the local chord length and
from the local 1/4 chord line.
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10. CONTROL POINT DUPLICATION

All methods similar to the one presented in this report have a certain natural advantage

over other methods used in the analysis of thin wings. This advantage is that from a single

influence matrix many other influence matrices, each corresponding to different values of the

parameters PP, MM, NN, and KK, may be obtained. This results in significant computer cost

savings because most of the cost associated with this method is encountered in calculating the

influence matrices. This capability arises from the fact that the fundamental pressure modes

are defined over the entire wing and without regard for where the control points are located.

Consider sets of spanwise control points chosen according to eq. 8.2.1. It can be seen from

this equation that the set of points for some given value of MM are a subset of the control points

for certain larger values of MM. For example the set of points for MM = 3 is identical to the

set of even numbered points for MM = 7. Conversely, for all odd values of MM there exist one

or more subsets which can be obtained from eq. 8.2.1. Table 10.1 lists various values of MM

with the corresponding subsets.

Now consider the detailed structure of the influence matrix itself. Each row of the in-

fluence matrix corresponds to a single control point while each column corresponds to a single

pressure mode. If MM were an odd number and KK = MM, then the influence matrix for

MM' = (MM - 1)/2 = KK' could be obtained by crossing out the set of (MM + 1)/2 rows

corresponding to the odd-numbered spanwise control points and the (MM + 1)/2 columns

corresponding to the spanwise pressure modes for which K > (MM - 1)/2. One could then use

this influence matrix to determine the solution for the smaller value of MM and KK. Thus from

the single influence matrix it is possible to extract multiple solutions which can then be used to

study the convergence (i.e., as in figures 9.3.2 - 9.3.4). This duplication does not occur however,

when MM is even and this is the reason using even values of MM is not as efficient as using odd

values and is the reason for trying procedures 2 and 3 in the previous section.

In addition to the cases in which certain values of MM yield spanwise control points which

are subsets of the control points for other, larger values of MM, there are also cases in which a

significant number of the control points for one value of MM are identical to a significant

number of the control points for a second value of MM. Table 10.2 lists some of these cases

and the total number of control points involved.
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This duplication of control points occurs not only for the spanwise control points, but

also for the chordwise control points. Table 10.3 identifies certain advantageous combinations

for both the Multhopp control points (eq. 8.1.1) and the Wagner control points (eq. 8.1.2).

Although some propitious combinations occur for the Multhopp points, the most useful and

effective combinations belong to the Wagner choice for the chordwise control points. This is

the other advantage for the Wagner choice alluded to in the previous section.

This advantageous duplication of control points has been exploited in preparing the test

cases for this report. For example the 36 cases for the circular wing were derived from only 4

influence matrices. One influence matrix was required for each value of JJ. Since symmetry

allowed the control points for i7 < 0 to be disregarded, the number of control points for the

12 combinations of PP and MM in tables 9.2.1 - 9.2.5 was (3 + 4 + 5 + 7) - (2 + 4 + 8) = 266.

The number of points at which the pressure modes were calculated, however, was only 9*8 = 72

(see table 10.3, line 5 and table 10.2, line 7). Thus it can be seen that a large number of repeti-

tive calculations can be avoided in a convergence study because of control point duplication.
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REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

MM VALUES OF MM YIELDING SUBSETS

3 1

5 2,1

7 3,1

9 ,1

11 5,3,2,1

13 6,1

15 7,3,1

31 15,7,3,1

47 23,15,11,7,5,3,2,1

TABLE 10.1. - SUBSET RELATIONS FOR THE SPANWISE
CONTROL POINTS.
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REPRODUCIBILITY O. TlEORIGINAL PAGE IS POOR'i

VALIJES OF NUtMBER OF SPANWISE
MM -CONTROL POIMTS IN

THE LOGICAL UNION

1,2,3,5,7,11 15

1,2,3,5,8,11,17 23

1,2,3,5,7,11,15,23 31

1,2,3,5,7,8,11,17,23,35 47

TABLE 10.2. - SETS OF VALUES OF MM FOR WHICH SIGNIFICANT
DUPLICATION OF SPANWISE CONTROL POINTS OCCURS.
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REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

CONTROL VALUES OF PP NUMBER OF CHORDWISE EFFECTIVENESS
POINT CONTROL POI'TS IN RATIO
TYPE THE LOGICAL UNION (Ecol.2/col.3)

3,4 5 1.40
3,5 5 1.60

WAGNER 3,4,5 7 1.71
3,4,7 7 2.00
3,4,5,7 9 2.11

1,4 4 1.25
MULTHOPP 1,2,7 7 1.43

1,3,10 10 1.40
1,2,4,7 10 1.40

TABLE 10.3. - SETS OF VALUES OF PP FOR WHICH SIGNIFICANT DUPLICATION
OF THE CHORDWISE CONTROL POINTS OCCURS.
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11. SUMMARY AND CONCLUSIONS

A method for solving the integral equation of subsonic, steady lifting surface theory has

been presented. A new technique for performing the chordwise integration was given. This

technique accounted for and took advantage of the fact that the chordwise integration cannot

be independent of the spanwise integration. It was shown for two different planforms that

the method requires fewer total integration points than two other methods while converging

to the correct results.

The use of control points on the leading and trailing edges was discussed. Formulas to

account for the irregularities in the spanwise integrand for control points on the wing edges

were given. It was shown that the use of the Wagner chordwise locations, which includes the

edge control points, is frequently advantageous to the usual Multhopp choice. It was shown

that the advantages of the Wagner control points are that fewer spanwise integration stations

are required and that there is greater control point duplication.

Wing edge kinks and cranks were discussed and methods alternative to the artificial

rounding technique for handling the edge kinks and cranks were illustrated for a particular

kinked wing. Although the alternative methods were possibly satisfactory, it was concluded

that the problem of the kinked wing deserves more study.

Finally the report introduced and explained the concept of control point duplication,

which allows studies of the convergence of the method with respect to the number of chord-

wise and spanwise control points to be conducted using considerably less computer time.
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